Познакомитесь с основными направлениями Data Science, узнаете, какие задачи решают дата-аналитики, дата-инженеры и специалисты по машинному обучению.
Научитесь общаться с заказчиками, выявлять потребности, собирать и документировать требования, проводить интервью.
Освоите азы языка Python на достаточном уровне, чтобы уверенно работать с данными.
Научитесь выгружать данные из различных источников, освоите инструменты Excel, SQL и Power BI. Узнаете, как описывать и оценивать качество исходных данных.
Освоите разведочный анализ данных: научитесь находить, очищать и подготавливать массивы данных так, чтобы на выходе иметь готовый к дальнейшей работе датасет.
Научитесь формулировать и проверять гипотезы. Пройдёте основы моделирования в машинном обучении и аналитике, создадите свою первую ML-модель, попробуете себя в роли продуктового и маркетингового аналитика.
Узнаете, как сравнивать модели и оценивать их качество. Приготовите модель к промышленной эксплуатации.
Превратите модель в законченный продукт. Научитесь автоматизировать потоки данных, запускать модели на серверах, следить за работой модели.
Получите базовые знания по математике для работы с машинным обучением. Поймёте, что такое аппроксимация, интерполяция, функции, регрессии, матрицы и векторы. Научитесь работать с математическими сущностями в Python-библиотеке SymPy.
Поймёте принципы работы со случайными величинами и событиями. Познакомитесь с некоторыми видами распределений и статистическими тестами, которые пригодятся при составлении моделей и проверке гипотез.
Мы резиденты Cyber park
Вместе к развитию цифрового образования в регионе